Monitoring For Recent Tectonic Activity On Mars

Brendan S. Bogar | Chris H. Okubo

University of Arizona

Outline and Acknowledgements

- Outline
- Statement of Problem
- Objectives
- Methods/Analysis Technique
- Results
- Interpretation of Results
- Interpretations cont./Future Applications

Statement of Problem

- Satellite imaging not fully analyzed for tectonic activity over time
- Difference in overlapping imaging across multiple years is not investigated for tectonic activity, usually for surface changes only
- Image analysis is difficult to accomplish on individual basis
- 933 stereo pairs collected during HiRISE's first year in operations not updated or organized according to tectonic activity

Objectives

- Examining the oldest and highest-resolution HiRISE stereo images of Mars beginning with images taken August 7th, 2007
- A total of 933 stereo pairs collected during HiRISE's first Mars year in operation to be prioritized and compared along season and time
- New images will be visually compared with the old images to evaluate for any surface changes that may indicate tectonic activity
- New techniques are to be investigated to enhance tectonic analysis work-flow

ESP_053753_2505_RED vs PSP_009803_2505_RED

DEPARTMENT OF PLANETARY SCIENCES

Lunar and Planetary Laboratory

ARIZONA

SPACE GRANT CONSORTIUM

Objectives (cont.)

- Incidental Solar Longitudes (days on Mars)
- Within accomplishable season of internship
- Delta Days less than 100
- Priority of tectonic investigation to include faults, joints, and drainage pits
- Promising tectonic attributes for selected landscapes to be re-imaged

Methodology Used

- Solar longitudes (Ls) and incidental seasonal changes to decrease potential candidates
- Dates between stereo images taken to increase image quality and difference
- Landscapes noted with larger chance of tectonic activity placed with imaging priority
- Re-imaging of areas of Mars must be within similar seasons for better comparison of landscapes

Methodology Used (cont.)

Registrations 1 Phase Correlation

2 Feature: MSER

Matched: 12 3 Feature: SURF

Matched: 26

urrent Registra	tion Setting	1	
Feature P	arameters		
Projective Number of Detect	Transform Transform ad Features	•	
Quality of Matche			
Has Retatio	-0 n		
Post-proc	essing		

ESP_053334_2650_RED VS PSP_009279_2650_RED

DEPARTMENT OF PLANETARY SCIENCES

Lunar and Planetary Laboratory

ARIZONA

Results

- Total of seven sets of stereo images re-imaged for tectonic analysis
- Use of Matlab machine learning for image registration and comparison aided in identifying potential differences
- Potential differences across images were noted and are to be peerreviewed for accuracy before confirmation is made

Potential Opportunities

- Using Machine learning along with geo-physicist knowledge and direction to produce tectonic imaging references
- Better future analysis speed for higher image resolution and image quantity
- Decreasing the learning curve towards in depth, successful tectonic analysis

ESP_053334_2650_RED

R

PSP_009279_2650_RED

NASA/JPL/University of Arizona

500 meters

DEPARTMENT OF PLANETARY SCIENCES 8

Lunar and Planetary Laboratory

PSP_009279_2650_RED

NASA/JPL/University of Arizona

SPACE GRANT CONSORTIUM

PSP_009803_2505_RED 5.0 km

NASA/JPL/University of Arizona

DEPARTMENT OF PLANETARY SCIENCES

Lunar and Planetary Laboratory

SPACE GRANT CONSORTIUM

DEPARTMENT OF PLANETARY SCIENCES 8

Lunar and Planetary Laboratory

ARIZONA